

Landsat Applications for Cryosphere Research

Snow and Ice are key both in terms of influencing climate and as indicators of climate change

Dorothy K. Hall

Cryospheric Sciences Laboratory

NASA / Goddard Space Flight Center Greenbelt, Md.

dorothy.k.hall@nasa.gov

Sustainable Land Imaging Users Forum
GSFC Visitor's Center
4 December 2013

Cryosphere Applications

- General
 - Change detection
 - Surface temperature mapping
 - •Debris cover mapping cover (including geochemical composition of surface debris)
 - Melt pond detection (glaciers, ice sheets & sea ice)
 - Extent / terminus position mapping
 - Surface melt extent
- •Small glaciers and ice caps
 - Glacier facies mapping
- •lce sheets
 - •Ice stream and ice shelf monitoring
 - Iceberg calving and tracking
 - Feature tracking from image pairs
- Sea ice
 - Lead and polynya mapping
- Permafrost and frozen ground
- •Snow
 - Snowmelt-runoff modeling to predict streamflow

Key Attributes

- Long time series (since 1972)
 - •For example, to develop CDRs for glaciers and snow-covered area
- •High resolution (up to 15 m)
- •Snow / cloud discrimination using 1.6 and 1.360-1.390 (cirrus) μm bands
- Higher signal to noise ratio for in visible bands
- •High-resolution imagery for validation of medium- and coarse-resolution imagery (e.g., MODIS & VIIRS)
- •Good radiometric calibration (e.g., for reflectance and surface temperature studies)

Major Recommendations

- •Increase the re-visit time, or launch two Landsats to achieve 8-day (or better) repeat coverage
- •Commit to back-continuity with previous Landsats (for development of CDRs and change detection, etc.)